Normal element

In mathematics, an element of a *-algebra is called normal if it commutates with its adjoint.[1]

Definition

Let A {\displaystyle {\mathcal {A}}} be a *-Algebra. An element a A {\displaystyle a\in {\mathcal {A}}} is called normal if it commutes with a {\displaystyle a^{*}} , i.e. it satisfies the equation a a = a a {\displaystyle aa^{*}=a^{*}a} .[1]

The set of normal elements is denoted by A N {\displaystyle {\mathcal {A}}_{N}} or N ( A ) {\displaystyle N({\mathcal {A}})} .

A special case of particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra, that satisfies the C*-identity ( a a = a 2   a A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ), which is called a C*-algebra.

Examples

  • Every self-adjoint element of a a *-algebra is normal.[1]
  • Every unitary element of a a *-algebra is normal.[2]
  • If A {\displaystyle {\mathcal {A}}} is a C*-Algebra and a A N {\displaystyle a\in {\mathcal {A}}_{N}} a normal element, then for every continuous function f {\displaystyle f} on the spectrum of a {\displaystyle a} the continuous functional calculus defines another normal element f ( a ) {\displaystyle f(a)} .[3]

Criteria

Let A {\displaystyle {\mathcal {A}}} be a *-algebra. Then:

  • An element a A {\displaystyle a\in {\mathcal {A}}} is normal if and only if the *-subalgebra generated by a {\displaystyle a} , meaning the smallest *-algebra containing a {\displaystyle a} , is commutative.[2]
  • Every element a A {\displaystyle a\in {\mathcal {A}}} can be uniquely decomposed into a real and imaginary part, which means there exist self-adjoint elements a 1 , a 2 A s a {\displaystyle a_{1},a_{2}\in {\mathcal {A}}_{sa}} , such that a = a 1 + i a 2 {\displaystyle a=a_{1}+\mathrm {i} a_{2}} , where i {\displaystyle \mathrm {i} } denotes the imaginary unit. Exactly then a {\displaystyle a} is normal if a 1 a 2 = a 2 a 1 {\displaystyle a_{1}a_{2}=a_{2}a_{1}} , i.e. real and imaginary part commutate.[1]

Properties

In *-algebras

Let a A N {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element of a *-algebra A {\displaystyle {\mathcal {A}}} . Then:

  • The adjoint element a {\displaystyle a^{*}} is also normal, since a = ( a ) {\displaystyle a=(a^{*})^{*}} holds for the involution *.[4]

In C*-algebras

Let a A N {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element of a C*-algebra A {\displaystyle {\mathcal {A}}} . Then:

  • It is a 2 = a 2 {\displaystyle \left\|a^{2}\right\|=\left\|a\right\|^{2}} , since for normal elements using the C*-identity a 2 2 = ( a 2 ) ( a 2 ) = ( a a ) ( a a ) = a a 2 = ( a 2 ) 2 {\displaystyle \left\|a^{2}\right\|^{2}=\left\|(a^{2})(a^{2})^{*}\right\|=\left\|(a^{*}a)^{*}(a^{*}a)\right\|=\left\|a^{*}a\right\|^{2}=\left(\left\|a\right\|^{2}\right)^{2}} holds.[5]
  • Every normal element is a normaloid element, i.e. the spectral radius r ( a ) {\displaystyle r(a)} equals the norm of a {\displaystyle a} , i.e. r ( a ) = a {\displaystyle r(a)=\left\|a\right\|} .[6] This follows from the spectral radius formula by repeated application of the previous property.[7]
  • A continuous functional calculus can be developed which – put simply – allows the application of continuous functions on the spectrum of a {\displaystyle a} to a {\displaystyle a} .[3]

See also

  • Normal matrix
  • Normal operator

Notes

  1. ^ a b c d Dixmier 1977, p. 4.
  2. ^ a b Dixmier 1977, p. 5.
  3. ^ a b Dixmier 1977, p. 13.
  4. ^ Dixmier 1977, pp. 3–4.
  5. ^ Werner 2018, p. 518.
  6. ^ Heuser 1982, p. 390.
  7. ^ Werner 2018, pp. 284–285, 518.

References

  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Heuser, Harro (1982). Functional analysis. Translated by Horvath, John. John Wiley & Sons Ltd. ISBN 0-471-10069-2.
  • Werner, Dirk (2018). Funktionalanalysis (in German) (8 ed.). Springer. ISBN 978-3-662-55407-4.
  • v
  • t
  • e
Spectral theory and *-algebras
Basic conceptsMain resultsSpecial Elements/OperatorsSpectrumDecomposition
Spectral TheoremSpecial algebrasFinite-DimensionalGeneralizationsMiscellaneousExamplesApplications