Pseudospectrum

In mathematics, the pseudospectrum of an operator is a set containing the spectrum of the operator and the numbers that are "almost" eigenvalues. Knowledge of the pseudospectrum can be particularly useful for understanding non-normal operators and their eigenfunctions.

The ε-pseudospectrum of a matrix A consists of all eigenvalues of matrices which are ε-close to A:[1]

Λ ϵ ( A ) = { λ C x C n { 0 } , E C n × n : ( A + E ) x = λ x , E ϵ } . {\displaystyle \Lambda _{\epsilon }(A)=\{\lambda \in \mathbb {C} \mid \exists x\in \mathbb {C} ^{n}\setminus \{0\},\exists E\in \mathbb {C} ^{n\times n}\colon (A+E)x=\lambda x,\|E\|\leq \epsilon \}.}

Numerical algorithms which calculate the eigenvalues of a matrix give only approximate results due to rounding and other errors. These errors can be described with the matrix E.

More generally, for Banach spaces X , Y {\displaystyle X,Y} and operators A : X Y {\displaystyle A:X\to Y} , one can define the ϵ {\displaystyle \epsilon } -pseudospectrum of A {\displaystyle A} (typically denoted by sp ϵ ( A ) {\displaystyle {\text{sp}}_{\epsilon }(A)} ) in the following way

sp ϵ ( A ) = { λ C ( A λ I ) 1 1 / ϵ } . {\displaystyle {\text{sp}}_{\epsilon }(A)=\{\lambda \in \mathbb {C} \mid \|(A-\lambda I)^{-1}\|\geq 1/\epsilon \}.}

where we use the convention that ( A λ I ) 1 = {\displaystyle \|(A-\lambda I)^{-1}\|=\infty } if A λ I {\displaystyle A-\lambda I} is not invertible.[2]

Notes

  1. ^ Hogben, Leslie (2013). Handbook of Linear Algebra, Second Edition. CRC Press. p. 23-1. ISBN 9781466507296. Retrieved 8 September 2017.
  2. ^ Böttcher, Albrecht; Silbermann, Bernd (1999). Introduction to Large Truncated Toeplitz Matrices. Springer New York. p. 70. doi:10.1007/978-1-4612-1426-7_3. ISBN 978-1-4612-1426-7.

Bibliography

  • Lloyd N. Trefethen and Mark Embree: "Spectra And Pseudospectra: The Behavior of Nonnormal Matrices And Operators", Princeton Univ. Press, ISBN 978-0691119465 (2005).

External links

  • Pseudospectra Gateway by Embree and Trefethen
  • v
  • t
  • e
Numerical linear algebra
Key concepts
  • Floating point
  • Numerical stability
Problems
Hardware
Software
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category