Numerical range

In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex n × n {\displaystyle n\times n} matrix A is the set

W ( A ) = { x A x x x x C n ,   x 0 } {\displaystyle W(A)=\left\{{\frac {\mathbf {x} ^{*}A\mathbf {x} }{\mathbf {x} ^{*}\mathbf {x} }}\mid \mathbf {x} \in \mathbb {C} ^{n},\ \mathbf {x} \not =0\right\}}

where x {\displaystyle \mathbf {x} ^{*}} denotes the conjugate transpose of the vector x {\displaystyle \mathbf {x} } . The numerical range includes, in particular, the diagonal entries of the matrix (obtained by choosing x equal to the unit vectors along the coordinate axes) and the eigenvalues of the matrix (obtained by choosing x equal to the eigenvectors).

In engineering, numerical ranges are used as a rough estimate of eigenvalues of A. Recently, generalizations of the numerical range are used to study quantum computing.

A related concept is the numerical radius, which is the largest absolute value of the numbers in the numerical range, i.e.

r ( A ) = sup { | λ | : λ W ( A ) } = sup x = 1 | A x , x | . {\displaystyle r(A)=\sup\{|\lambda |:\lambda \in W(A)\}=\sup _{\|x\|=1}|\langle Ax,x\rangle |.}

Properties

  1. The numerical range is the range of the Rayleigh quotient.
  2. (Hausdorff–Toeplitz theorem) The numerical range is convex and compact.
  3. W ( α A + β I ) = α W ( A ) + { β } {\displaystyle W(\alpha A+\beta I)=\alpha W(A)+\{\beta \}} for all square matrix A {\displaystyle A} and complex numbers α {\displaystyle \alpha } and β {\displaystyle \beta } . Here I {\displaystyle I} is the identity matrix.
  4. W ( A ) {\displaystyle W(A)} is a subset of the closed right half-plane if and only if A + A {\displaystyle A+A^{*}} is positive semidefinite.
  5. The numerical range W ( ) {\displaystyle W(\cdot )} is the only function on the set of square matrices that satisfies (2), (3) and (4).
  6. (Sub-additive) W ( A + B ) W ( A ) + W ( B ) {\displaystyle W(A+B)\subseteq W(A)+W(B)} , where the sum on the right-hand side denotes a sumset.
  7. W ( A ) {\displaystyle W(A)} contains all the eigenvalues of A {\displaystyle A} .
  8. The numerical range of a 2 × 2 {\displaystyle 2\times 2} matrix is a filled ellipse.
  9. W ( A ) {\displaystyle W(A)} is a real line segment [ α , β ] {\displaystyle [\alpha ,\beta ]} if and only if A {\displaystyle A} is a Hermitian matrix with its smallest and the largest eigenvalues being α {\displaystyle \alpha } and β {\displaystyle \beta } .
  10. If A {\displaystyle A} is a normal matrix then W ( A ) {\displaystyle W(A)} is the convex hull of its eigenvalues.
  11. If α {\displaystyle \alpha } is a sharp point on the boundary of W ( A ) {\displaystyle W(A)} , then α {\displaystyle \alpha } is a normal eigenvalue of A {\displaystyle A} .
  12. r ( ) {\displaystyle r(\cdot )} is a norm on the space of n × n {\displaystyle n\times n} matrices.
  13. r ( A ) A 2 r ( A ) {\displaystyle r(A)\leq \|A\|\leq 2r(A)} , where {\displaystyle \|\cdot \|} denotes the operator norm.
  14. r ( A n ) r ( A ) n {\displaystyle r(A^{n})\leq r(A)^{n}}

Generalisations

  • C-numerical range
  • Higher-rank numerical range
  • Joint numerical range
  • Product numerical range
  • Polynomial numerical hull

See also

Bibliography

  • Choi, M.D.; Kribs, D.W.; Życzkowski (2006), "Quantum error correcting codes from the compression formalism", Rep. Math. Phys., 58 (1): 77–91, arXiv:quant-ph/0511101, Bibcode:2006RpMP...58...77C, doi:10.1016/S0034-4877(06)80041-8, S2CID 119427312.
  • Dirr, G.; Helmkel, U.; Kleinsteuber, M.; Schulte-Herbrüggen, Th. (2006), "A new type of C-numerical range arising in quantum computing", Proc. Appl. Math. Mech., 6: 711–712, doi:10.1002/pamm.200610336.
  • Bonsall, F.F.; Duncan, J. (1971), Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press, ISBN 978-0-521-07988-4.
  • Bonsall, F.F.; Duncan, J. (1971), Numerical Ranges II, Cambridge University Press, ISBN 978-0-521-20227-5.
  • Horn, Roger A.; Johnson, Charles R. (1991), Topics in Matrix Analysis, Cambridge University Press, Chapter 1, ISBN 978-0-521-46713-1.
  • Horn, Roger A.; Johnson, Charles R. (1990), Matrix Analysis, Cambridge University Press, Ch. 5.7, ex. 21, ISBN 0-521-30586-1
  • Li, C.K. (1996), "A simple proof of the elliptical range theorem", Proc. Am. Math. Soc., 124 (7): 1985, doi:10.1090/S0002-9939-96-03307-2.
  • Keeler, Dennis S.; Rodman, Leiba; Spitkovsky, Ilya M. (1997), "The numerical range of 3 × 3 matrices", Linear Algebra and Its Applications, 252 (1–3): 115, doi:10.1016/0024-3795(95)00674-5.
  • "Functional Characterizations of the Field of Values and the Convex Hull of the Spectrum", Charles R. Johnson, Proceedings of the American Mathematical Society, 61(2):201-204, Dec 1976.
  • v
  • t
  • e
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category