Fungsi theta


Fungsi theta asli Jacobi θ1 dengan u = iπz dan dengan nome q = eiπτ = 0.1e0.1iπ. Konvensi adalah (Mathematica): θ 1 ( u ; q ) = 2 q 1 4 n = 0 ( 1 ) n q n ( n + 1 ) sin ( 2 n + 1 ) u = n = ( 1 ) n 1 2 q ( n + 1 2 ) 2 e ( 2 n + 1 ) i u {\displaystyle {\begin{aligned}\theta _{1}(u;q)&=2q^{\frac {1}{4}}\sum _{n=0}^{\infty }(-1)^{n}q^{n(n+1)}\sin(2n+1)u\\&=\sum _{n=-\infty }^{\infty }(-1)^{n-{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}e^{(2n+1)iu}\end{aligned}}}

Dalam matematika, Fungsi theta adalah fungsi khusus dari beberapa variabel kompleks. Mereka penting di banyak bidang, termasuk teori varietas abelian dan ruang moduli, dan bentuk kuadrat. Mereka juga telah diterapkan pada teori soliton. Ketika digeneralisasi menjadi aljabar Grassmann, mereka juga muncul di teori medan kuantum.[1]

Bentuk fungsi theta yang paling umum adalah yang terjadi dalam teori fungsi eliptik. Sehubungan dengan salah satu variabel kompleks (secara konvensional disebut z), fungsi theta memiliki properti yang mengekspresikan perilakunya sehubungan dengan penambahan periode fungsi eliptik terkait, menjadikannya fungsi kuasiperiodik. Dalam teori abstrak ini berasal dari bundel garis kondisi keturunan.

Fungsi theta Jacobi

Jacobi theta 1
Jacobi theta 2
Jacobi theta 3
Jacobi theta 4

Ada beberapa fungsi yang terkait erat yang disebut fungsi jacobi theta, dan banyak sistem notasi yang berbeda dan tidak kompatibel untuk fungsi tersebut. Fungsi theta Jacobi (dinamai Carl Gustav Jacob Jacobi) merupakan fungsi yang ditentukan untuk dua variabel kompleks z dan τ, dimana z dapat berupa bilangan kompleks apa pun dan τ adalah rasio setengah periode, terbatas pada bidang setengah atas, yang berarti ia memiliki bagian imajiner positif. Itu diberikan oleh rumus

ϑ ( z ; τ ) = n = exp ( π i n 2 τ + 2 π i n z ) = 1 + 2 n = 1 ( e π i τ ) n 2 cos ( 2 π n z ) = n = q n 2 η n {\displaystyle {\begin{aligned}\vartheta (z;\tau )&=\sum _{n=-\infty }^{\infty }\exp \left(\pi in^{2}\tau +2\pi inz\right)\\&=1+2\sum _{n=1}^{\infty }\left(e^{\pi i\tau }\right)^{n^{2}}\cos(2\pi nz)\\&=\sum _{n=-\infty }^{\infty }q^{n^{2}}\eta ^{n}\end{aligned}}}

dimana q = exp(π) adalah nome dan η = exp(2πiz). Ini adalah bentuk Jacobi. Pada τ, ini adalah deret Fourier untuk 1-periodik seluruh fungsi dari z. Karenanya, fungsi theta adalah 1-periodik in z:

ϑ ( z + 1 ; τ ) = ϑ ( z ; τ ) . {\displaystyle \vartheta (z+1;\tau )=\vartheta (z;\tau ).}

Ternyata juga menjadi τ kuasiperiodik dalam z, dengan

ϑ ( z + τ ; τ ) = exp [ π i ( τ + 2 z ) ] ϑ ( z ; τ ) . {\displaystyle \vartheta (z+\tau ;\tau )=\exp[-\pi i(\tau +2z)]\vartheta (z;\tau ).}

Jadi, secara umum,

ϑ ( z + a + b τ ; τ ) = exp ( π i b 2 τ 2 π i b z ) ϑ ( z ; τ ) {\displaystyle \vartheta (z+a+b\tau ;\tau )=\exp \left(-\pi ib^{2}\tau -2\pi ibz\right)\vartheta (z;\tau )}

untuk semua bilangan bulat a dan b.

Fungsi theta θ1 dengan nomor berbeda q = eiπτ. Titik hitam di gambar sebelah kanan menunjukkan caranya q berubah dengan τ.
Fungsi theta θ1 dengan nomor berbeda q = eiπτ. Titik hitam di gambar sebelah kanan menunjukkan caranya q berubah dengan τ.

Fungsi pembantu

Fungsi theta Jacobi yang didefinisikan di atas terkadang dipertimbangkan bersama dengan tiga fungsi theta tambahan, dalam hal ini ditulis dengan subskrip 0 ganda:

ϑ 00 ( z ; τ ) = ϑ ( z ; τ ) {\displaystyle \vartheta _{00}(z;\tau )=\vartheta (z;\tau )}

Fungsi bantu (atau setengah periode) ditentukan oleh

ϑ 01 ( z ; τ ) = ϑ ( z + 1 2 ; τ ) ϑ 10 ( z ; τ ) = exp ( 1 4 π i τ + π i z ) ϑ ( z + 1 2 τ ; τ ) ϑ 11 ( z ; τ ) = exp ( 1 4 π i τ + π i ( z + 1 2 ) ) ϑ ( z + 1 2 τ + 1 2 ; τ ) . {\displaystyle {\begin{aligned}\vartheta _{01}(z;\tau )&=\vartheta \left(z+{\tfrac {1}{2}};\tau \right)\\[3pt]\vartheta _{10}(z;\tau )&=\exp \left({\tfrac {1}{4}}\pi i\tau +\pi iz\right)\vartheta \left(z+{\tfrac {1}{2}}\tau ;\tau \right)\\[3pt]\vartheta _{11}(z;\tau )&=\exp \left({\tfrac {1}{4}}\pi i\tau +\pi i\left(z+{\tfrac {1}{2}}\right)\right)\vartheta \left(z+{\tfrac {1}{2}}\tau +{\tfrac {1}{2}};\tau \right).\end{aligned}}}

Notasi ini mengikuti Riemann dan Mumford; Formulasi asli Jacobi adalah dalam istilah nome q = eiπτ daripada τ. Dalam notasi Jacobi θ adalah fungsi tertulis:

θ 1 ( z ; q ) = ϑ 11 ( z ; τ ) θ 2 ( z ; q ) = ϑ 10 ( z ; τ ) θ 3 ( z ; q ) = ϑ 00 ( z ; τ ) θ 4 ( z ; q ) = ϑ 01 ( z ; τ ) {\displaystyle {\begin{aligned}\theta _{1}(z;q)&=-\vartheta _{11}(z;\tau )\\\theta _{2}(z;q)&=\vartheta _{10}(z;\tau )\\\theta _{3}(z;q)&=\vartheta _{00}(z;\tau )\\\theta _{4}(z;q)&=\vartheta _{01}(z;\tau )\end{aligned}}}

Definisi di atas dari fungsi Jacobi theta sama sekali tidak unik. Lihat Fungsi jacobi theta (variasi notasi) untuk pembahasan lebih lanjut.

Bila kita mengatur z = 0 dalam fungsi theta di atas, kita mendapatkan empat fungsi dari τ saja, yang ditentukan pada setengah bidang atas (terkadang disebut konstanta teta.) Mak ini dapat digunakan untuk mendefinisikan berbagai bentuk modular, dan untuk mengukur kurva tertentu; khususnya, identitas Jacobi adalah

ϑ 00 ( 0 ; τ ) 4 = ϑ 01 ( 0 ; τ ) 4 + ϑ 10 ( 0 ; τ ) 4 {\displaystyle \vartheta _{00}(0;\tau )^{4}=\vartheta _{01}(0;\tau )^{4}+\vartheta _{10}(0;\tau )^{4}}

yang merupakan kurva Fermat dari derajat empat.

Identitas Jacobi

Identitas Jacobi menggambarkan bagaimana fungsi theta berubah di bawah kelompok modular, yang dihasilkan oleh ττ + 1 dan τ ↦ −1τ. Persamaan untuk transformasi pertama mudah ditemukan sejak menambahkan satu ke τ dalam eksponen memiliki efek yang sama seperti penjumlahan 12 ke z (nn2 mod 2). Untuk yang kedua, maka

α = ( i τ ) 1 2 exp ( π τ i z 2 ) . {\displaystyle \alpha =(-i\tau )^{\frac {1}{2}}\exp \left({\frac {\pi }{\tau }}iz^{2}\right).}

Kemudian

ϑ 00 ( z τ ; 1 τ ) = α ϑ 00 ( z ; τ ) ϑ 01 ( z τ ; 1 τ ) = α ϑ 10 ( z ; τ ) ϑ 10 ( z τ ; 1 τ ) = α ϑ 01 ( z ; τ ) ϑ 11 ( z τ ; 1 τ ) = i α ϑ 11 ( z ; τ ) . {\displaystyle {\begin{aligned}\vartheta _{00}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{00}(z;\tau )\quad &\vartheta _{01}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{10}(z;\tau )\\[3pt]\vartheta _{10}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=\alpha \,\vartheta _{01}(z;\tau )\quad &\vartheta _{11}\!\left({\frac {z}{\tau }};{\frac {-1}{\tau }}\right)&=-i\alpha \,\vartheta _{11}(z;\tau ).\end{aligned}}}

Fungsi theta dalam istilah nome

Alih-alih mengekspresikan fungsi theta dalam istilah z dan τ, kita dapat mengungkapkannya dalam istilah argumen w dan nome q, dimana w = eπiz dan q = eπ. Dalam bentuk ini, fungsinya menjadi

ϑ 00 ( w , q ) = n = ( w 2 ) n q n 2 ϑ 01 ( w , q ) = n = ( 1 ) n ( w 2 ) n q n 2 ϑ 10 ( w , q ) = n = ( w 2 ) n + 1 2 q ( n + 1 2 ) 2 ϑ 11 ( w , q ) = i n = ( 1 ) n ( w 2 ) n + 1 2 q ( n + 1 2 ) 2 . {\displaystyle {\begin{aligned}\vartheta _{00}(w,q)&=\sum _{n=-\infty }^{\infty }(w^{2})^{n}q^{n^{2}}\quad &\vartheta _{01}(w,q)&=\sum _{n=-\infty }^{\infty }(-1)^{n}(w^{2})^{n}q^{n^{2}}\\[3pt]\vartheta _{10}(w,q)&=\sum _{n=-\infty }^{\infty }(w^{2})^{n+{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}\quad &\vartheta _{11}(w,q)&=i\sum _{n=-\infty }^{\infty }(-1)^{n}(w^{2})^{n+{\frac {1}{2}}}q^{\left(n+{\frac {1}{2}}\right)^{2}}.\end{aligned}}}

Kita melihat bahwa fungsi theta juga bisa didefinisikan dalam istilah w dan q, tanpa referensi langsung ke fungsi eksponensial. Oleh karena itu, rumus-rumus ini dapat digunakan untuk mendefinisikan fungsi Theta di atas bidang lain di mana fungsi eksponensial mungkin tidak dapat didefinisikan di mana-mana, seperti bidang bilangan p-adic.

Wakilan integral

Fungsi Jacobi theta memiliki wakilan integral berikut:

ϑ 00 ( z ; τ ) = i i i + e i π τ u 2 cos ( 2 u z + π u ) sin ( π u ) d u ; ϑ 01 ( z ; τ ) = i i i + e i π τ u 2 cos ( 2 u z ) sin ( π u ) d u ; ϑ 10 ( z ; τ ) = i e i z + 1 4 i π τ i i + e i π τ u 2 cos ( 2 u z + π u + π τ u ) sin ( π u ) d u ; ϑ 11 ( z ; τ ) = e i z + 1 4 i π τ i i + e i π τ u 2 cos ( 2 u z + π τ u ) sin ( π u ) d u . {\displaystyle {\begin{aligned}\vartheta _{00}(z;\tau )&=-i\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2uz+\pi u)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{01}(z;\tau )&=-i\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2uz)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{10}(z;\tau )&=-ie^{iz+{\frac {1}{4}}i\pi \tau }\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2uz+\pi u+\pi \tau u)}{\sin(\pi u)}}\mathrm {d} u;\\[6pt]\vartheta _{11}(z;\tau )&=e^{iz+{\frac {1}{4}}i\pi \tau }\int _{i-\infty }^{i+\infty }e^{i\pi \tau u^{2}}{\frac {\cos(2uz+\pi \tau u)}{\sin(\pi u)}}\mathrm {d} u.\end{aligned}}}

Nilai eksplisit

Lihat Yi (2004).[2][3]

φ ( e π x ) = ϑ ( 0 ; i x ) = θ 3 ( 0 ; e π x ) = n = e x π n 2 φ ( e π ) = π 4 Γ ( 3 4 ) φ ( e 2 π ) = π 4 Γ ( 3 4 ) 6 + 4 2 4 2 φ ( e 3 π ) = π 4 Γ ( 3 4 ) 27 + 18 3 4 3 φ ( e 4 π ) = π 4 Γ ( 3 4 ) 8 4 + 2 4 φ ( e 5 π ) = π 4 Γ ( 3 4 ) 225 + 100 5 4 5 φ ( e 6 π ) = 3 2 + 3 3 4 + 2 3 27 4 + 1728 4 4 3 243 π 2 8 6 1 + 6 2 3 6 Γ ( 3 4 ) = π 4 Γ ( 3 4 ) 1 4 + 3 4 + 4 4 + 9 4 1728 8 φ ( e 7 π ) = π 4 Γ ( 3 4 ) 13 + 7 + 7 + 3 7 14 28 8 = π 4 Γ ( 3 4 ) 7 + 4 7 + 5 28 4 + 1372 4 4 7 φ ( e 8 π ) = π 4 Γ ( 3 4 ) 128 8 + 2 + 2 4 φ ( e 9 π ) = π 4 Γ ( 3 4 ) ( 1 + ( 1 + 3 ) 2 3 3 ) 3 φ ( e 10 π ) = π 4 Γ ( 3 4 ) 20 + 450 + 500 + 10 20 4 10 φ ( e 12 π ) = π 4 Γ ( 3 4 ) 1 4 + 2 4 + 3 4 + 4 4 + 9 4 + 18 4 + 24 4 2 108 8 φ ( e 16 π ) = π 4 Γ ( 3 4 ) ( 4 + 128 4 + 1024 8 4 + 1024 2 4 4 ) 16 {\displaystyle {\begin{aligned}\varphi (e^{-\pi x})&=\vartheta (0;ix)=\theta _{3}(0;e^{-\pi x})=\sum _{n=-\infty }^{\infty }e^{-x\pi n^{2}}\\[8pt]\varphi \left(e^{-\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}\\[8pt]\varphi \left(e^{-2\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt[{4}]{6+4{\sqrt {2}}}}{2}}\\[8pt]\varphi \left(e^{-3\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt[{4}]{27+18{\sqrt {3}}}}{3}}\\[8pt]\varphi \left(e^{-4\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {{\sqrt[{4}]{8}}+2}{4}}\\[8pt]\varphi \left(e^{-5\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt[{4}]{225+100{\sqrt {5}}}}{5}}\\[8pt]\varphi \left(e^{-6\pi }\right)&={\frac {{\sqrt[{3}]{3{\sqrt {2}}+3{\sqrt[{4}]{3}}+2{\sqrt {3}}-{\sqrt[{4}]{27}}+{\sqrt[{4}]{1728}}-4}}\cdot {\sqrt[{8}]{243{\pi }^{2}}}}{6{\sqrt[{6}]{1+{\sqrt {6}}-{\sqrt {2}}-{\sqrt {3}}}}{\Gamma \left({\frac {3}{4}}\right)}}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt[{4}]{1}}+{\sqrt[{4}]{3}}+{\sqrt[{4}]{4}}+{\sqrt[{4}]{9}}}}{\sqrt[{8}]{1728}}}\\[8pt]\varphi \left(e^{-7\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\sqrt {{\frac {{\sqrt {13+{\sqrt {7}}}}+{\sqrt {7+3{\sqrt {7}}}}}{14}}\cdot {\sqrt[{8}]{28}}}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt[{4}]{7+4{\sqrt {7}}+5{\sqrt[{4}]{28}}+{\sqrt[{4}]{1372}}}}{\sqrt {7}}}\\[8pt]\varphi \left(e^{-8\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {{\sqrt[{8}]{128}}+{\sqrt {2+{\sqrt {2}}}}}{4}}\\[8pt]\varphi \left(e^{-9\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\left(1+\left(1+{\sqrt {3}}\right){\sqrt[{3}]{2-{\sqrt {3}}}}\right)}{3}}\\[8pt]\varphi \left(e^{-10\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {20+{\sqrt {450}}+{\sqrt {500}}+10{\sqrt[{4}]{20}}}}{10}}\\[8pt]\varphi \left(e^{-12\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\sqrt {{\sqrt[{4}]{1}}+{\sqrt[{4}]{2}}+{\sqrt[{4}]{3}}+{\sqrt[{4}]{4}}+{\sqrt[{4}]{9}}+{\sqrt[{4}]{18}}+{\sqrt[{4}]{24}}}}{2{\sqrt[{8}]{108}}}}\\[8pt]\varphi \left(e^{-16\pi }\right)&={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}{\frac {\left(4+{\sqrt[{4}]{128}}+{\sqrt[{4}]{1024{\sqrt[{4}]{8}}+1024{\sqrt[{4}]{2}}}}\right)}{16}}\end{aligned}}}

Beberapa identitas deret

Dua identitas seri berikutnya dibuktikan oleh István Mező:[4]

ϑ 4 2 ( q ) = i q 1 4 k = q 2 k 2 k ϑ 1 ( 2 k 1 2 i ln q , q ) , ϑ 4 2 ( q ) = k = q 2 k 2 ϑ 4 ( k ln q i , q ) . {\displaystyle {\begin{aligned}\vartheta _{4}^{2}(q)&=iq^{\frac {1}{4}}\sum _{k=-\infty }^{\infty }q^{2k^{2}-k}\vartheta _{1}\left({\frac {2k-1}{2i}}\ln q,q\right),\\[6pt]\vartheta _{4}^{2}(q)&=\sum _{k=-\infty }^{\infty }q^{2k^{2}}\vartheta _{4}\left({\frac {k\ln q}{i}},q\right).\end{aligned}}}

These relations hold for all 0 < q < 1. Specializing the values of q, we have the next parameter free sums

π e π 2 1 Γ 2 ( 3 4 ) = i k = e π ( k 2 k 2 ) ϑ 1 ( i π 2 ( 2 k 1 ) , e π ) , π 2 1 Γ 2 ( 3 4 ) = k = ϑ 4 ( i k π , e π ) e 2 π k 2 {\displaystyle {\begin{aligned}{\sqrt {\frac {\pi {\sqrt {e^{\pi }}}}{2}}}\cdot {\frac {1}{\Gamma ^{2}\left({\frac {3}{4}}\right)}}&=i\sum _{k=-\infty }^{\infty }e^{\pi \left(k-2k^{2}\right)}\vartheta _{1}\left({\frac {i\pi }{2}}(2k-1),e^{-\pi }\right),\\[6pt]{\sqrt {\frac {\pi }{2}}}\cdot {\frac {1}{\Gamma ^{2}\left({\frac {3}{4}}\right)}}&=\sum _{k=-\infty }^{\infty }{\frac {\vartheta _{4}\left(ik\pi ,e^{-\pi }\right)}{e^{2\pi k^{2}}}}\end{aligned}}}

Nol dari fungsi theta Jacobi

Semua angka nol dari fungsi theta Jacobi adalah angka nol sederhana dan diberikan sebagai berikut:

ϑ ( z , τ ) = ϑ 3 ( z , τ ) = 0 z = m + n τ + 1 2 + τ 2 ϑ 1 ( z , τ ) = 0 z = m + n τ ϑ 2 ( z , τ ) = 0 z = m + n τ + 1 2 ϑ 4 ( z , τ ) = 0 z = m + n τ + τ 2 {\displaystyle {\begin{aligned}\vartheta (z,\tau )=\vartheta _{3}(z,\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {1}{2}}+{\frac {\tau }{2}}\\[3pt]\vartheta _{1}(z,\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau \\[3pt]\vartheta _{2}(z,\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {1}{2}}\\[3pt]\vartheta _{4}(z,\tau )&=0\quad &\Longleftrightarrow &&\quad z&=m+n\tau +{\frac {\tau }{2}}\end{aligned}}}

dimana m, n adalah bilangan bulat acak.

Kaitannya dengan fungsi zeta Riemann

Relasi

ϑ ( 0 ; 1 τ ) = ( i τ ) 1 2 ϑ ( 0 ; τ ) {\displaystyle \vartheta \left(0;-{\frac {1}{\tau }}\right)=(-i\tau )^{\frac {1}{2}}\vartheta (0;\tau )}

digunakan oleh Riemann untuk membuktikan persamaan fungsional untuk fungsi zeta Riemann, dengan menggunakan transformasi Mellin

Γ ( s 2 ) π s 2 ζ ( s ) = 1 2 0 ( ϑ ( 0 ; i t ) 1 ) t s 2 d t t {\displaystyle \Gamma \left({\frac {s}{2}}\right)\pi ^{-{\frac {s}{2}}}\zeta (s)={\frac {1}{2}}\int _{0}^{\infty }(\vartheta (0;it)-1)t^{\frac {s}{2}}{\frac {\mathrm {d} t}{t}}}

yang dapat ditampilkan sebagai invarian di bawah substitusi s oleh 1 − s. Integral terkait untuk z ≠ 0 diberikan dalam artikel di Fungsi zeta Hurwitz.

Kaitannya dengan fungsi q-gamma

Fungsi theta keempat dan dengan demikian yang lainnya juga terhubung erat ke fungsi gamma-q Jackson melalui relasi[5]

( Γ q 2 ( x ) Γ q 2 ( 1 x ) ) 1 = q 2 x ( 1 x ) ( q 2 ; q 2 ) 3 ( q 2 1 ) ϑ 4 ( 1 2 i ( 1 2 x ) log q , 1 q ) . {\displaystyle \left(\Gamma _{q^{2}}(x)\Gamma _{q^{2}}(1-x)\right)^{-1}={\frac {q^{2x(1-x)}}{\left(q^{-2};q^{-2}\right)_{\infty }^{3}\left(q^{2}-1\right)}}\vartheta _{4}\left({\frac {1}{2i}}(1-2x)\log q,{\frac {1}{q}}\right).}

Hubungan dengan fungsi eta Dedekind

Maka η(τ) menjadi Dedekind eta function, dan argumen dari fungsi theta sebagai nome q = eπ. Then,

θ 2 ( 0 , q ) = ϑ 10 ( 0 ; τ ) = 2 η 2 ( 2 τ ) η ( τ ) , θ 3 ( 0 , q ) = ϑ 00 ( 0 ; τ ) = η 5 ( τ ) η 2 ( 1 2 τ ) η 2 ( 2 τ ) = η 2 ( 1 2 ( τ + 1 ) ) η ( τ + 1 ) , θ 4 ( 0 , q ) = ϑ 01 ( 0 ; τ ) = η 2 ( 1 2 τ ) η ( τ ) , {\displaystyle {\begin{aligned}\theta _{2}(0,q)=\vartheta _{10}(0;\tau )&={\frac {2\eta ^{2}(2\tau )}{\eta (\tau )}},\\[3pt]\theta _{3}(0,q)=\vartheta _{00}(0;\tau )&={\frac {\eta ^{5}(\tau )}{\eta ^{2}\left({\frac {1}{2}}\tau \right)\eta ^{2}(2\tau )}}={\frac {\eta ^{2}\left({\frac {1}{2}}(\tau +1)\right)}{\eta (\tau +1)}},\\[3pt]\theta _{4}(0,q)=\vartheta _{01}(0;\tau )&={\frac {\eta ^{2}\left({\frac {1}{2}}\tau \right)}{\eta (\tau )}},\end{aligned}}}

dan,

θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 4 ( 0 , q ) = 2 η 3 ( τ ) . {\displaystyle \theta _{2}(0,q)\,\theta _{3}(0,q)\,\theta _{4}(0,q)=2\eta ^{3}(\tau ).}

Lihat pula Fungsi modular Weber.

Modulus elips

Modulus eliptik adalah

k ( τ ) = ϑ 10 ( 0 , τ ) 2 ϑ 00 ( 0 , τ ) 2 {\displaystyle k(\tau )={\frac {\vartheta _{10}(0,\tau )^{2}}{\vartheta _{00}(0,\tau )^{2}}}}

dan modulus eliptik komplementernya adalah

k ( τ ) = ϑ 01 ( 0 , τ ) 2 ϑ 00 ( 0 , τ ) 2 {\displaystyle k'(\tau )={\frac {\vartheta _{01}(0,\tau )^{2}}{\vartheta _{00}(0,\tau )^{2}}}}

Solusi untuk persamaan panas

Kaitannya dengan kelompok Heisenberg

Fungsi Jacobi theta tidak berubah di bawah aksi subkelompok diskrit dari kelompok Heisenberg. Pembalikan ini disajikan dalam artikel di representasi theta dari kelompok Heisenberg.


Catatan

  1. ^ Tyurin, Andrey N. (30 October 2002). "Quantization, Classical and Quantum Field Theory and Theta-Functions". arΧiv:math/0210466v1. 
  2. ^ Yi, Jinhee (2004). "Theta-function identities and the explicit formulas for theta-function and their applications". Journal of Mathematical Analysis and Applications. 292 (2): 381–400. doi:10.1016/j.jmaa.2003.12.009 alt=Dapat diakses gratis. 
  3. ^ Proper credit for these results goes to Ramanujan. See Ramanujan's lost notebook and a relevant reference at Euler function. The Ramanujan results quoted at Euler function plus a few elementary operations give the results below, so the results below are either in Ramanujan's lost notebook or follow immediately from it.
  4. ^ Mező, István (2013), "Duplication formulae involving Jacobi theta functions and Gosper's q-trigonometric functions", Proceedings of the American Mathematical Society, 141 (7): 2401–2410, doi:10.1090/s0002-9939-2013-11576-5 alt=Dapat diakses gratis 
  5. ^ Mező, István (2012). "A q-Raabe formula and an integral of the fourth Jacobi theta function". Journal of Number Theory. 133 (2): 692–704. doi:10.1016/j.jnt.2012.08.025 alt=Dapat diakses gratis. 

Referensi

  • Abramowitz, Milton; Stegun, Irene A. (1964). Handbook of Mathematical Functions. New York: Dover Publications. sec. 16.27ff. ISBN 978-0-486-61272-0. 
  • Akhiezer, Naum Illyich (1990) [1970]. Elements of the Theory of Elliptic Functions. AMS Translations of Mathematical Monographs. 79. Providence, RI: AMS. ISBN 978-0-8218-4532-5. 
  • Farkas, Hershel M.; Kra, Irwin (1980). Riemann Surfaces. New York: Springer-Verlag. ch. 6. ISBN 978-0-387-90465-8. . (for treatment of the Riemann theta)
  • Hardy, G. H.; Wright, E. M. (1959). An Introduction to the Theory of Numbers (edisi ke-4th). Oxford: Clarendon Press. 
  • Mumford, David (1983). Tata Lectures on Theta I. Boston: Birkhauser. ISBN 978-3-7643-3109-2. 
  • Pierpont, James (1959). Functions of a Complex Variable. New York: Dover Publications. 
  • Rauch, Harry E.; Farkas, Hershel M. (1974). Theta Functions with Applications to Riemann Surfaces. Baltimore: Williams & Wilkins. ISBN 978-0-683-07196-2. 
  • Reinhardt, William P.; Walker, Peter L. (2010), "Theta Functions", dalam Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248 
  • Whittaker, E. T.; Watson, G. N. (1927). A Course in Modern Analysis (edisi ke-4th). Cambridge: Cambridge University Press. ch. 21.  (history of Jacobi's θ functions)

Bacaan lebih lanjut

  • Farkas, Hershel M. (2008). "Theta functions in complex analysis and number theory". Dalam Alladi, Krishnaswami. Surveys in Number Theory. Developments in Mathematics. 17. Springer-Verlag. hlm. 57–87. ISBN 978-0-387-78509-7. Zbl 1206.11055. 
  • Schoeneberg, Bruno (1974). "IX. Theta series". Elliptic modular functions. Die Grundlehren der mathematischen Wissenschaften. 203. Springer-Verlag. hlm. 203–226. ISBN 978-3-540-06382-7. 
  • Ackerman, M. Math. Ann. (1979) 244: 75. "On the Generating Functions of Certain Eisenstein Series Diarsipkan 2023-07-26 di Wayback Machine." Springer-Verlag

Harry Rauch with Hershel M. Farkas: Theta functions with applications to Riemann Surfaces, Williams and Wilkins, Baltimore MD 1974, ISBN 0-683-07196-3.

Pranala luar

  • Moiseev Igor. "Elliptic functions for Matlab and Octave". Diarsipkan dari versi asli tanggal 2023-06-02. Diakses tanggal 2020-09-25. 

Templat:PlanetMath attribution

  • l
  • b
  • s
Fungsi polinomial
Fungsi aljabar
Fungsi dalam
teori bilangan
Fungsi trigonometri


  • Gudermann
  • sinc
Fungsi berdasarkan
huruf Yunani
  • Fungsi beta
    • Dirichlet
    • taklengkap
  • Fungsi chi
    • Legendre
  • Fungsi delta
  • Fungsi eta
    • Dirichlet
  • Fungsi gamma
    • Fungsi digamma
    • Barnes
    • Meijer
    • banyak
    • eliptik
    • Hadamard
    • multivariabel
    • p-adik
    • q
    • taklengkap
    • Fungsi poligamma
    • Fungsi trigamma
  • Fungsi lambda
    • Dirchlet
    • modular
    • von Mangoldt
  • Fungsi mu
    • Möbius
  • Fungsi phi
  • Fungsi pi
  • Fungsi sigma
    • Weierstrass
  • Fungsi theta
  • Fungsi zeta
Fungsi berdasarkan
nama matematikawan
  • Airy
  • Ackermann
  • Bessel
  • Bessel–Clifford
  • Bottcher
  • Chebyshev
  • Clausen
  • Dawson
  • Dirichlet
    • beta
    • eta
    • L
    • lambda
  • Faddeeva
  • Fermi–Dirac
    • lengkap
    • taklengkap
  • Fresnel
  • Fox
  • Gudermann
  • Hermite
  • Fungsi Jacob
    • eliptik Jacobi
  • Kelvin
  • Fungsi Kummer
  • Fungsi Lambert
  • Lamé
  • Laguerre
  • Legendre
    • chi
    • iring
  • Liouville
  • Mathieu
  • Meijer
  • Mittag-Leffler
  • Painlevé
  • Riemann
  • Riesz
  • Scorer
  • Spence
  • von Mangoldt
  • Weierstrass
    • eliptik
    • eta
    • sigma
    • zeta
Fungsi khusus
Fungsi lainnya
  • Aritmetik-geometrik
  • eliptik
  • Fungsi hiperbolik
    • konfluen
  • K
  • sinkrotron
  • tabung parabolik
  • tanda tanya Minkowski
  • Pentasi
  • Student
  • Tetrasi
Pengawasan otoritas Sunting ini di Wikidata
Perpustakaan nasional
  • Jepang
Lain-lain
  • Microsoft Academic