Cegiełka Eulera

Cegiełka Eulera

Cegiełka Euleraprostopadłościan, w którym zarówno długości krawędzi, jak i przekątnych ścian są liczbami naturalnymi. Wymiary cegiełki Eulera można zatem otrzymać rozwiązując układ równań diofantycznych[1]

a 2 + b 2 = d 2 {\displaystyle a^{2}+b^{2}=d^{2}}
a 2 + c 2 = e 2 {\displaystyle a^{2}+c^{2}=e^{2}}
b 2 + c 2 = f 2 {\displaystyle b^{2}+c^{2}=f^{2}}
a > b > c {\displaystyle a>b>c}

Euler podał dwa rozwiązania parametryczne powyższego układu, ale nie obejmują one wszystkich możliwych rozwiązań[1].

Najmniejsza z cegiełek Eulera ma wymiary krawędzi 240 – 117 – 44 oraz przekątne ścian 267 – 125 – 244 i została odkryta w 1719 roku przez Paula Halckego.

Niektóre z cegiełek Eulera posortowane według najdłuższej krawędzi
  • (240, 117, 44)
  • (275, 252, 240)
  • (550, 504, 480)
  • (693, 480, 140)
  • (720, 132, 85)
  • (792, 231, 160)
  • (825, 756, 720)
  • (960, 468, 176)
  • (1155, 1100, 1008)
  • (1200, 585, 220)
  • (1386, 960, 280)
  • (1584, 1020, 187)
  • (2340, 880, 429)
  • (2640, 855, 832)
  • (2992, 2475, 780)
  • (3120, 2035, 828)
  • (3168, 924, 640)
  • (5984, 2295, 1560)
  • (6325, 5796, 528)
  • (6336, 748, 195)
  • (6688, 6300, 1155)
  • (6732, 4576, 1755)
  • (8160, 4888, 495)
  • (9120, 1672, 1575)
  • (9405, 9152, 2964)

Do tej pory nie udało się znaleźć tzw. doskonałej cegiełki Eulera, w której także długość głównej przekątnej jest liczbą naturalną. Nie wiadomo też, czy takie cegiełki istnieją. Znane są jedynie własności, jakie musi ona posiadać:

  • jedna krawędź musi mieć długość podzielną przez 4, a inna przez 16,
  • jedna krawędź musi mieć długość podzielną przez 3, a inna przez 9,
  • jedna krawędź musi mieć długość podzielną przez 5,
  • jedna krawędź musi mieć długość podzielną przez 11.

Przypisy

  1. a b Eric W.E.W. Weisstein Eric W.E.W., Euler Brick, [w:] MathWorld, Wolfram Research [dostęp 2015-09-05]  (ang.).
  • p
  • d
  • e
Teoria liczb
ogólne typy liczb
relacje
podzielność
zdefiniowane podzielnością
działania
liczby pierwsze
podstawy
testy pierwszości
sita
faktoryzacja
hipotezy
równania
diofantyczne
liniowe
kwadratowe
wyższych stopni
układy równań
powiązane zagadnienia
twierdzenia
arytmetyki modularnej
inne zagadnienia
twierdzenia limitacyjne