Porter's constant

In mathematics, Porter's constant C arises in the study of the efficiency of the Euclidean algorithm.[1][2] It is named after J. W. Porter of University College, Cardiff.

Euclid's algorithm finds the greatest common divisor of two positive integers m and n. Hans Heilbronn proved that the average number of iterations of Euclid's algorithm, for fixed n and averaged over all choices of relatively prime integers m < n, is

12 ln 2 π 2 ln n + o ( ln n ) . {\displaystyle {\frac {12\ln 2}{\pi ^{2}}}\ln n+o(\ln n).}

Porter showed that the error term in this estimate is a constant, plus a polynomially-small correction, and Donald Knuth evaluated this constant to high accuracy. It is:

C = 6 ln 2 π 2 [ 3 ln 2 + 4 γ 24 π 2 ζ ( 2 ) 2 ] 1 2 = 6 ln 2 ( ( 48 ln A ) ( ln 2 ) ( 4 ln π ) 2 ) π 2 1 2 = 1.4670780794 {\displaystyle {\begin{aligned}C&={{6\ln 2} \over {\pi ^{2}}}\left[3\ln 2+4\gamma -{{24} \over {\pi ^{2}}}\zeta '(2)-2\right]-{{1} \over {2}}\\[6pt]&={{{6\ln 2}((48\ln A)-(\ln 2)-(4\ln \pi )-2)} \over {\pi ^{2}}}-{{1} \over {2}}\\[6pt]&=1.4670780794\ldots \end{aligned}}}

where

γ {\displaystyle \gamma } is the Euler–Mascheroni constant
ζ {\displaystyle \zeta } is the Riemann zeta function
A {\displaystyle A} is the Glaisher–Kinkelin constant

(sequence A086237 in the OEIS)

ζ ( 2 ) = π 2 6 [ 12 ln A γ ln ( 2 π ) ] = k = 2 ln k k 2 {\displaystyle -\zeta ^{\prime }(2)={{\pi ^{2}} \over 6}\left[12\ln A-\gamma -\ln(2\pi )\right]=\sum _{k=2}^{\infty }{{\ln k} \over {k^{2}}}}
{\displaystyle }

See also

References

  1. ^ Knuth, Donald E. (1976), "Evaluation of Porter's constant", Computers & Mathematics with Applications, 2 (2): 137–139, doi:10.1016/0898-1221(76)90025-0
  2. ^ Porter, J. W. (1975), "On a theorem of Heilbronn", Mathematika, 22 (1): 20–28, doi:10.1112/S0025579300004459, MR 0498452.


  • v
  • t
  • e