Multivariate gamma function

Multivariate generalization of the gamma function

In mathematics, the multivariate gamma function Γp is a generalization of the gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and inverse Wishart distributions, and the matrix variate beta distribution.[1]

It has two equivalent definitions. One is given as the following integral over the p × p {\displaystyle p\times p} positive-definite real matrices:

Γ p ( a ) = S > 0 exp ( t r ( S ) ) | S | a p + 1 2 d S , {\displaystyle \Gamma _{p}(a)=\int _{S>0}\exp \left(-{\rm {tr}}(S)\right)\,\left|S\right|^{a-{\frac {p+1}{2}}}dS,}

where | S | {\displaystyle |S|} denotes the determinant of S {\displaystyle S} . The other one, more useful to obtain a numerical result is:

Γ p ( a ) = π p ( p 1 ) / 4 j = 1 p Γ ( a + ( 1 j ) / 2 ) . {\displaystyle \Gamma _{p}(a)=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma (a+(1-j)/2).}

In both definitions, a {\displaystyle a} is a complex number whose real part satisfies ( a ) > ( p 1 ) / 2 {\displaystyle \Re (a)>(p-1)/2} . Note that Γ 1 ( a ) {\displaystyle \Gamma _{1}(a)} reduces to the ordinary gamma function. The second of the above definitions allows to directly obtain the recursive relationships for p 2 {\displaystyle p\geq 2} :

Γ p ( a ) = π ( p 1 ) / 2 Γ ( a ) Γ p 1 ( a 1 2 ) = π ( p 1 ) / 2 Γ p 1 ( a ) Γ ( a + ( 1 p ) / 2 ) . {\displaystyle \Gamma _{p}(a)=\pi ^{(p-1)/2}\Gamma (a)\Gamma _{p-1}(a-{\tfrac {1}{2}})=\pi ^{(p-1)/2}\Gamma _{p-1}(a)\Gamma (a+(1-p)/2).}

Thus

  • Γ 2 ( a ) = π 1 / 2 Γ ( a ) Γ ( a 1 / 2 ) {\displaystyle \Gamma _{2}(a)=\pi ^{1/2}\Gamma (a)\Gamma (a-1/2)}
  • Γ 3 ( a ) = π 3 / 2 Γ ( a ) Γ ( a 1 / 2 ) Γ ( a 1 ) {\displaystyle \Gamma _{3}(a)=\pi ^{3/2}\Gamma (a)\Gamma (a-1/2)\Gamma (a-1)}

and so on.

This can also be extended to non-integer values of p {\displaystyle p} with the expression:

Γ p ( a ) = π p ( p 1 ) / 4 G ( a + 1 2 ) G ( a + 1 ) G ( a + 1 p 2 ) G ( a + 1 p 2 ) {\displaystyle \Gamma _{p}(a)=\pi ^{p(p-1)/4}{\frac {G(a+{\frac {1}{2}})G(a+1)}{G(a+{\frac {1-p}{2}})G(a+1-{\frac {p}{2}})}}}

Where G is the Barnes G-function, the indefinite product of the Gamma function.

The function is derived by Anderson[2] from first principles who also cites earlier work by Wishart, Mahalanobis and others.

There also exists a version of the multivariate gamma function which instead of a single complex number takes a p {\displaystyle p} -dimensional vector of complex numbers as its argument. It generalizes the above defined multivariate gamma function insofar as the latter is obtained by a particular choice of multivariate argument of the former.[3]

Derivatives

We may define the multivariate digamma function as

ψ p ( a ) = log Γ p ( a ) a = i = 1 p ψ ( a + ( 1 i ) / 2 ) , {\displaystyle \psi _{p}(a)={\frac {\partial \log \Gamma _{p}(a)}{\partial a}}=\sum _{i=1}^{p}\psi (a+(1-i)/2),}

and the general polygamma function as

ψ p ( n ) ( a ) = n log Γ p ( a ) a n = i = 1 p ψ ( n ) ( a + ( 1 i ) / 2 ) . {\displaystyle \psi _{p}^{(n)}(a)={\frac {\partial ^{n}\log \Gamma _{p}(a)}{\partial a^{n}}}=\sum _{i=1}^{p}\psi ^{(n)}(a+(1-i)/2).}

Calculation steps

  • Since
Γ p ( a ) = π p ( p 1 ) / 4 j = 1 p Γ ( a + 1 j 2 ) , {\displaystyle \Gamma _{p}(a)=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma \left(a+{\frac {1-j}{2}}\right),}
it follows that
Γ p ( a ) a = π p ( p 1 ) / 4 i = 1 p Γ ( a + 1 i 2 ) a j = 1 , j i p Γ ( a + 1 j 2 ) . {\displaystyle {\frac {\partial \Gamma _{p}(a)}{\partial a}}=\pi ^{p(p-1)/4}\sum _{i=1}^{p}{\frac {\partial \Gamma \left(a+{\frac {1-i}{2}}\right)}{\partial a}}\prod _{j=1,j\neq i}^{p}\Gamma \left(a+{\frac {1-j}{2}}\right).}
  • By definition of the digamma function, ψ,
Γ ( a + ( 1 i ) / 2 ) a = ψ ( a + ( i 1 ) / 2 ) Γ ( a + ( i 1 ) / 2 ) {\displaystyle {\frac {\partial \Gamma (a+(1-i)/2)}{\partial a}}=\psi (a+(i-1)/2)\Gamma (a+(i-1)/2)}
it follows that
Γ p ( a ) a = π p ( p 1 ) / 4 j = 1 p Γ ( a + ( 1 j ) / 2 ) i = 1 p ψ ( a + ( 1 i ) / 2 ) = Γ p ( a ) i = 1 p ψ ( a + ( 1 i ) / 2 ) . {\displaystyle {\begin{aligned}{\frac {\partial \Gamma _{p}(a)}{\partial a}}&=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma (a+(1-j)/2)\sum _{i=1}^{p}\psi (a+(1-i)/2)\\[4pt]&=\Gamma _{p}(a)\sum _{i=1}^{p}\psi (a+(1-i)/2).\end{aligned}}}

References

  1. ^ James, Alan T. (June 1964). "Distributions of Matrix Variates and Latent Roots Derived from Normal Samples". The Annals of Mathematical Statistics. 35 (2): 475–501. doi:10.1214/aoms/1177703550. ISSN 0003-4851.
  2. ^ Anderson, T W (1984). An Introduction to Multivariate Statistical Analysis. New York: John Wiley and Sons. pp. Ch. 7. ISBN 0-471-88987-3.
  3. ^ D. St. P. Richards (n.d.). "Chapter 35 Functions of Matrix Argument". Digital Library of Mathematical Functions. Retrieved 23 May 2022.
  • 1. James, A. (1964). "Distributions of Matrix Variates and Latent Roots Derived from Normal Samples". Annals of Mathematical Statistics. 35 (2): 475–501. doi:10.1214/aoms/1177703550. MR 0181057. Zbl 0121.36605.
  • 2. A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.