Glaisher–Kinkelin constant

In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted A, is a mathematical constant, related to the K-function and the Barnes G-function. The constant appears in a number of sums and integrals, especially those involving gamma functions and zeta functions. It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin.

Its approximate value is:

A = 1.28242712910062263687...   (sequence A074962 in the OEIS).

The Glaisher–Kinkelin constant A can be given by the limit:

A = lim n K ( n + 1 ) n n 2 2 + n 2 + 1 12 e n 2 4 {\displaystyle A=\lim _{n\rightarrow \infty }{\frac {K(n+1)}{n^{{\frac {n^{2}}{2}}+{\frac {n}{2}}+{\frac {1}{12}}}\,e^{-{\frac {n^{2}}{4}}}}}}

where K(n) = Πn-1
k=1
kk
is the hyperfactorial. This formula displays a similarity between A and π which is perhaps best illustrated by noting Stirling's formula:

2 π = lim n n ! n n + 1 2 e n {\displaystyle {\sqrt {2\pi }}=\lim _{n\to \infty }{\frac {n!}{n^{n+{\frac {1}{2}}}\,e^{-n}}}}

which shows that just as π is obtained from approximation of the factorials, A can also be obtained from a similar approximation to the hyperfactorials.

An equivalent definition for A involving the Barnes G-function, given by G(n) = Πn−2
k=1
k! = [Γ(n)]n−1/K(n)
where Γ(n) is the gamma function is:

A = lim n ( 2 π ) n 2 n n 2 2 1 12 e 3 n 2 4 + 1 12 G ( n + 1 ) {\displaystyle A=\lim _{n\rightarrow \infty }{\frac {\left(2\pi \right)^{\frac {n}{2}}n^{{\frac {n^{2}}{2}}-{\frac {1}{12}}}e^{-{\frac {3n^{2}}{4}}+{\frac {1}{12}}}}{G(n+1)}}} .

The Glaisher–Kinkelin constant also appears in evaluations of the derivatives of the Riemann zeta function, such as:

ζ ( 1 ) = 1 12 ln A {\displaystyle \zeta '(-1)={\tfrac {1}{12}}-\ln A}
k = 2 ln k k 2 = ζ ( 2 ) = π 2 6 ( 12 ln A γ ln 2 π ) {\displaystyle \sum _{k=2}^{\infty }{\frac {\ln k}{k^{2}}}=-\zeta '(2)={\frac {\pi ^{2}}{6}}\left(12\ln A-\gamma -\ln 2\pi \right)}

where γ is the Euler–Mascheroni constant. The latter formula leads directly to the following product found by Glaisher:

k = 1 k 1 k 2 = ( A 12 2 π e γ ) π 2 6 {\displaystyle \prod _{k=1}^{\infty }k^{\frac {1}{k^{2}}}=\left({\frac {A^{12}}{2\pi e^{\gamma }}}\right)^{\frac {\pi ^{2}}{6}}}

An alternative product formula, defined over the prime numbers, reads [1]

k = 1 p k 1 p k 2 1 = A 12 2 π e γ , {\displaystyle \prod _{k=1}^{\infty }p_{k}^{\frac {1}{p_{k}^{2}-1}}={\frac {A^{12}}{2\pi e^{\gamma }}},}

where pk denotes the kth prime number.

The following are some integrals that involve this constant:

0 1 2 ln Γ ( x ) d x = 3 2 ln A + 5 24 ln 2 + 1 4 ln π {\displaystyle \int _{0}^{\frac {1}{2}}\ln \Gamma (x)\,dx={\tfrac {3}{2}}\ln A+{\frac {5}{24}}\ln 2+{\tfrac {1}{4}}\ln \pi }
0 x ln x e 2 π x 1 d x = 1 2 ζ ( 1 ) = 1 24 1 2 ln A {\displaystyle \int _{0}^{\infty }{\frac {x\ln x}{e^{2\pi x}-1}}\,dx={\tfrac {1}{2}}\zeta '(-1)={\tfrac {1}{24}}-{\tfrac {1}{2}}\ln A}

A series representation for this constant follows from a series for the Riemann zeta function given by Helmut Hasse.

ln A = 1 8 1 2 n = 0 1 n + 1 k = 0 n ( 1 ) k ( n k ) ( k + 1 ) 2 ln ( k + 1 ) {\displaystyle \ln A={\tfrac {1}{8}}-{\tfrac {1}{2}}\sum _{n=0}^{\infty }{\frac {1}{n+1}}\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}(k+1)^{2}\ln(k+1)}

References

  1. ^ Van Gorder, Robert A. (2012). "Glaisher-Type Products over the Primes". International Journal of Number Theory. 08 (2): 543–550. doi:10.1142/S1793042112500297.
  • Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math.NT/0506319. doi:10.1007/s11139-007-9102-0. S2CID 14910435.
  • Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". Ramanujan Journal. 16 (3): 247–270. arXiv:math/0506319. doi:10.1007/s11139-007-9102-0. S2CID 14910435. (Provides a variety of relationships.)
  • Weisstein, Eric W. "Glaisher–Kinkelin Constant". MathWorld.
  • Weisstein, Eric W. "Riemann Zeta Function". MathWorld.

External links

  • The Glaisher–Kinkelin constant to 20,000 decimal places