Firoozbakht's conjecture

Prime gap function

In number theory, Firoozbakht's conjecture (or the Firoozbakht conjecture[1][2]) is a conjecture about the distribution of prime numbers. It is named after the Iranian mathematician Farideh Firoozbakht who stated it first in 1982.

The conjecture states that p n 1 / n {\displaystyle p_{n}^{1/n}} (where p n {\displaystyle p_{n}} is the nth prime) is a strictly decreasing function of n, i.e.,

p n + 1 n + 1 < p n n  for all  n 1. {\displaystyle {\sqrt[{n+1}]{p_{n+1}}}<{\sqrt[{n}]{p_{n}}}\qquad {\text{ for all }}n\geq 1.}

Equivalently:

p n + 1 < p n 1 + 1 n  for all  n 1 , {\displaystyle p_{n+1}<p_{n}^{1+{\frac {1}{n}}}\qquad {\text{ for all }}n\geq 1,}

see OEIS: A182134, OEIS: A246782.

By using a table of maximal gaps, Farideh Firoozbakht verified her conjecture up to 4.444×1012.[2] Now with more extensive tables of maximal gaps, the conjecture has been verified for all primes below 2641.84×1019.[3][4]

If the conjecture were true, then the prime gap function g n = p n + 1 p n {\displaystyle g_{n}=p_{n+1}-p_{n}} would satisfy:[5]

g n < ( log p n ) 2 log p n  for all  n > 4. {\displaystyle g_{n}<(\log p_{n})^{2}-\log p_{n}\qquad {\text{ for all }}n>4.}

Moreover:[6]

g n < ( log p n ) 2 log p n 1  for all  n > 9 , {\displaystyle g_{n}<(\log p_{n})^{2}-\log p_{n}-1\qquad {\text{ for all }}n>9,}

see also OEIS: A111943. This is among the strongest upper bounds conjectured for prime gaps, even somewhat stronger than the Cramér and Shanks conjectures.[4] It implies a strong form of Cramér's conjecture and is hence inconsistent with the heuristics of Granville and Pintz[7][8][9] and of Maier[10][11] which suggest that

g n > 2 ε e γ ( log p n ) 2 1.1229 ( log p n ) 2 , {\displaystyle g_{n}>{\frac {2-\varepsilon }{e^{\gamma }}}(\log p_{n})^{2}\approx 1.1229(\log p_{n})^{2},}

occurs infinitely often for any ε > 0 , {\displaystyle \varepsilon >0,} where γ {\displaystyle \gamma } denotes the Euler–Mascheroni constant.

Two related conjectures (see the comments of OEIS: A182514) are

( log ( p n + 1 ) log ( p n ) ) n < e , {\displaystyle \left({\frac {\log(p_{n+1})}{\log(p_{n})}}\right)^{n}<e,}

which is weaker, and

( p n + 1 p n ) n < n log ( n )  for all  n > 5 , {\displaystyle \left({\frac {p_{n+1}}{p_{n}}}\right)^{n}<n\log(n)\qquad {\text{ for all }}n>5,}

which is stronger.

See also

  • Prime number theorem
  • Andrica's conjecture
  • Legendre's conjecture
  • Oppermann's conjecture
  • Cramér's conjecture

Notes

  1. ^ Ribenboim, Paulo (2004). The Little Book of Bigger Primes Second Edition. Springer-Verlag. p. 185. ISBN 9780387201696.
  2. ^ a b Rivera, Carlos. "Conjecture 30. The Firoozbakht Conjecture". Retrieved 22 August 2012.
  3. ^ Gaps between consecutive primes
  4. ^ a b Kourbatov, Alexei. "Prime Gaps: Firoozbakht Conjecture".
  5. ^ Sinha, Nilotpal Kanti (2010), "On a new property of primes that leads to a generalization of Cramer's conjecture", arXiv:1010.1399 [math.NT].
  6. ^ Kourbatov, Alexei (2015), "Upper bounds for prime gaps related to Firoozbakht's conjecture", Journal of Integer Sequences, 18 (Article 15.11.2), arXiv:1506.03042, MR 3436186, Zbl 1390.11105.
  7. ^ Granville, A. (1995), "Harald Cramér and the distribution of prime numbers" (PDF), Scandinavian Actuarial Journal, 1: 12–28, doi:10.1080/03461238.1995.10413946, MR 1349149, Zbl 0833.01018, archived from the original (PDF) on 2016-05-02.
  8. ^ Granville, Andrew (1995), "Unexpected irregularities in the distribution of prime numbers" (PDF), Proceedings of the International Congress of Mathematicians, 1: 388–399, doi:10.1007/978-3-0348-9078-6_32, ISBN 978-3-0348-9897-3, Zbl 0843.11043.
  9. ^ Pintz, János (2007), "Cramér vs. Cramér: On Cramér's probabilistic model for primes", Funct. Approx. Comment. Math., 37 (2): 232–471, doi:10.7169/facm/1229619660, MR 2363833, S2CID 120236707, Zbl 1226.11096
  10. ^ Adleman, Leonard M.; McCurley, Kevin S. (1994), "Open problems in number-theoretic complexity. II", in Adleman, Leonard M.; Huang, Ming-Deh (eds.), Algorithmic Number Theory: Proceedings of the First International Symposium (ANTS-I) held at Cornell University, Ithaca, New York, May 6–9, 1994, Lecture Notes in Computer Science, vol. 877, Berlin: Springer, pp. 291–322, doi:10.1007/3-540-58691-1_70, ISBN 3-540-58691-1, MR 1322733
  11. ^ Maier, Helmut (1985), "Primes in short intervals", The Michigan Mathematical Journal, 32 (2): 221–225, doi:10.1307/mmj/1029003189, ISSN 0026-2285, MR 0783576, Zbl 0569.10023

References

  • Ribenboim, Paulo (2004). The Little Book of Bigger Primes Second Edition. Springer-Verlag. ISBN 0-387-20169-6.
  • Riesel, Hans (1985). Prime Numbers and Computer Methods for Factorization, Second Edition. Birkhauser. ISBN 3-7643-3291-3.
  • v
  • t
  • e
Mathematics in Iran
Mathematicians
Before
20th Century
Modern
Flowers by Hamid Naderi Yeganeh
Prize Recipients
Fields Medal
EMS Prize
Satter Prize
OrganizationsInstitutions
  • v
  • t
  • e
Prime number classes
By formula
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Double Mersenne (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Factorial (n! ± 1)
  • Primorial (pn# ± 1)
  • Euclid (pn# + 1)
  • Pythagorean (4n + 1)
  • Pierpont (2m·3n + 1)
  • Quartan (x4 + y4)
  • Solinas (2m ± 2n ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Cuban (x3 − y3)/(x − y)
  • Leyland (xy + yx)
  • Thabit (3·2n − 1)
  • Williams ((b−1)·bn − 1)
  • Mills (A3n)
By integer sequence
By property
Base-dependent
Patterns
  • Twin (p, p + 2)
  • Bi-twin chain (n ± 1, 2n ± 1, 4n ± 1, …)
  • Triplet (p, p + 2 or p + 4, p + 6)
  • Quadruplet (p, p + 2, p + 6, p + 8)
  • k-tuple
  • Cousin (p, p + 4)
  • Sexy (p, p + 6)
  • Chen
  • Sophie Germain/Safe (p, 2p + 1)
  • Cunningham (p, 2p ± 1, 4p ± 3, 8p ± 7, ...)
  • Arithmetic progression (p + a·n, n = 0, 1, 2, 3, ...)
  • Balanced (consecutive p − n, p, p + n)
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229
  • 233
  • 239
  • 241
  • 251
  • 257
  • 263
  • 269
  • 271
  • 277
  • 281